1	$\frac{1}{2}x^6 + 4x^{\frac{1}{2}} + c$	4	B1 for $\frac{1}{2}x^6$, M1 for $kx^{\frac{1}{2}}$, A1 for $k = 4$ or $\overline{1}$, B1 for $+ c$ dependent on at least one power increased	allow $\frac{3}{6} x^6$ isw,
---	---	---	---	------------------------------

2	(i) $\frac{x^4}{x^4} - x^3 - \frac{x^2}{x^2} + 3x$	M2	M1 if at least two terms correct	ignore + c
	their integral at 3 – their integral at 1 [= $-2.25 - 1.75$]	M1	dependent on integration attempted	M0 for evaluation of $x^3 - 3x^2 - x + 3$ or of differentiated version
	= -4 isw represents area between curve and x axis between $x = 1$ and 3	B1		B0 for area <i>under</i> or above curve between $x = 1$ and 3
	negative since below <i>x</i> -axis	B1		
2	(ii) $y' = 3x^2 - 6x - 1$ their $y' = 0$ soi	M1 M1	dependent on differentiation attempted	
	x = 2a with $a = 3, b = -6$ and $c = -1$ isw	M1	or $3(x-1)^2 - 4 = 0$ or better	no follow through: NB
	x = 1 or better as final answer	A1	eg A1 for $1 \pm \frac{2}{3}\sqrt{3}$	working implies use of correct method
	$\frac{6-\sqrt{48}}{6} < x < \frac{6+\sqrt{48}}{6}$ or ft their	B 1	allow \leq instead of $<$	A0 for incorrect simplification, eg $1 \pm \sqrt{48}$
	6 6 final answer			allow B1 if <i>both</i> inequalities are stated separately and it's clear that both apply
				allow B1 if the terms and the signs are in reverse order

3	$\frac{1}{2}x^2 + 3x^{-1} + c \text{ o.e.}$	3	1 for each term	3
			-	

4	$4x^5$	1		
	$-12x^{-\frac{1}{2}}$	2	M1 for other $kx^{\frac{1}{2}}$	
	+c	1		4

5	$2x^6 + \frac{3}{4}x^{\frac{4}{3}} + 7x + c$	5	1 for $2x^{6}$; 2 for $\frac{3}{4}x^{\frac{4}{3}}$ or 1 for other $kx^{\frac{4}{3}}$; 1 for $7x$; 1 for $+c$	5
---	--	---	--	---

6	$\frac{2}{3}x^{\frac{3}{2}} - 3x^{-2} + c$ o.e.	5	1 for each element	5
---	---	---	--------------------	---

7	x ⁴ /4	B1		
	$\frac{x^{-2}}{-2}$	B2	B1 for kx^{-2}	
	с	B1		4

Q	uestion	Answer	Marks	Guidance		
8	(i)	$kx^{\frac{1}{3}-1}$ oe	M1	<i>k</i> is any non-zero constant		
		$4x^{\frac{-2}{3}}$ isw cao	A1	ignore $+ c$	allow any equivalent exact simplified	
			[2]			
8	(ii)	kx^{-3+1} oe	M1	<i>k</i> is any non-zero constant		
		$-3x^{-2}$ isw	A1		allow any equivalent exact simplified form	
		+c	A1			
			[3]			