1	$\frac{1}{2} x^{6}+4 x^{\frac{1}{2}}+c$	$\mathbf{4}$	$\mathbf{B 1}$ for $\frac{1}{2} x^{6}, \mathbf{M 1}$ for $k x^{\frac{1}{2}}, \mathbf{A 1}$ for $k=4$ or $\frac{4}{\mathbf{1}}, \mathbf{B 1}$ for $+c$ dependent on at least one power increased	allow $\frac{\mathbf{3}}{\mathbf{6}} x^{6}$ isw,

\begin{tabular}{|c|c|c|c|c|}
\hline 2 \& \begin{tabular}{l}
(i) \(\frac{x^{4}}{4}-x^{3}-\frac{x^{2}}{2}+3 x\) \\
their integral at 3 - their integral at 1
\[
[=-2.25-1.75]
\]
\[
=-4 \text { isw }
\] \\
represents area between curve and \(x\) axis between \(x=1\) and 3 \\
negative since below \(x\)-axis
\end{tabular} \& \begin{tabular}{l}
M2 \\
M1 \\
A1 \\
B1 \\
B1
\end{tabular} \& M1 if at least two terms correct dependent on integration attempted \& \begin{tabular}{l}
ignore \(+c\) \\
M0 for evaluation of \(x^{3}-3 x^{2}-x+3\) or of differentiated version \\
B0 for area under or above curve between \(x=1\) and 3
\end{tabular} \\
\hline 2 \& \begin{tabular}{l}
(ii) \(y^{\prime}=3 x^{2}-6 x-1\) \\
their \(y^{\prime}=0\) soi \\
6 and \(c=-1\) isw \\
\(x=\frac{6}{6}\) or better as final answer \\
\(\frac{6-\sqrt{48}}{6}<x<\frac{6+\sqrt{48}}{6}\) or ft their final answer
\end{tabular} \& M1
M1
M1
A1

B1 \& \begin{tabular}{l}
dependent on differentiation attempted \\
or $3(x-1)^{2}-4[=0]$ or better \\
eg A1 for $1 \pm \frac{2}{3} \sqrt{3}$ \\
allow \leq instead of $<$

 \&

no follow through; NB \square atis working implies use of correct method \\
A0 for incorrect simplification, eg $1 \pm \sqrt{ } 48$ \\
allow $\mathbf{B 1}$ if both inequalities are stated separately and it's clear that both apply \\
allow $\mathbf{B 1}$ if the terms and the signs are in reverse order
\end{tabular} \\

\hline
\end{tabular}

3	$x^{2}+3 x^{-1}+c$ o.e.	3	1 for each term	3

4	$4 x^{5}$	1		
	$-12 x^{-\frac{1}{2}}$	2	M1 for other $k x^{-\frac{1}{2}}$	
		1		

$\mathbf{5}$	$2 x^{6}+\frac{3}{4} x^{\frac{4}{3}}+7 x+c$	5	1 for $2 x^{6} ; 2$ for $\frac{3}{4} x^{\frac{4}{3}}$ or 1 for other $k x^{\frac{4}{3}} ; 1$ for $7 x ;$ 1 for $+c$	5

$\mathbf{6}$	$\frac{2}{3} x^{\frac{3}{2}}-3 x^{-2}+c$ o.e.	5	1 for each element	5

7	$x^{4} / 4$	B1		
	$\frac{x^{-2}}{-2}$	B2	B1 for $k x^{-2}$	
	B1		4	

| Question | | Answer | Marks | | Guidance |
| :--- | :--- | :--- | :--- | :---: | :--- | :--- |
| $\mathbf{8}$ | (i) | $k x^{\frac{1}{3}-1}$ oe | M1 | k is any non-zero constant | |
| | | $4 x^{\frac{-2}{3}}$ isw cao | A1 | ignore $+c$ | |
| $[2]$ | | allow any equivalent exact simplified
 form | | | |
| $\mathbf{8}$ | (ii) | $k x^{-3+1}$ oe | M1 | k is any non-zero constant | |

